Quasi-periodic decompositions and the Kemperman structure theorem
نویسندگان
چکیده
منابع مشابه
Quasi-periodic decompositions and the Kemperman structure theorem
The Kemperman Structure Theorem (KST) yields a recursive description of the structure of a pair of finite subsets A and B of an abelian group satisfying |A + B| ≤ |A| + |B| − 1. In this paper, we introduce a notion of quasi-periodic decompositions and develop their basic properties in relation to KST. This yields a fuller understanding of KST, and gives a way to more effectively use KST in prac...
متن کاملExtensions of the Scherk-Kemperman Theorem
Let Γ = (V,E) be a reflexive relation with a transitive automorphisms group. Let v ∈ V and let F be a finite subset of V with v ∈ F. We prove that the size of Γ(F ) (the image of F ) is at least |F |+ |Γ(v)| − |Γ−(v) ∩ F |. Let A,B be finite subsets of a group G. Applied to Cayley graphs, our result reduces to following extension of the Scherk-Kemperman Theorem, proved by Kemperman: |AB| ≥ |A|+...
متن کاملthe underlying structure of language proficiency and the proficiency level
هدف از انجام این تخقیق بررسی رابطه احتمالی بین سطح مهارت زبان خارجی (foreign language proficiency) و ساختار مهارت زبان خارجی بود. تعداد 314 زبان آموز مونث و مذکر که عمدتا دانشجویان رشته های زبان انگلیسی در سطوح کارشناسی و کارشناسی ارشد بودند در این تحقیق شرکت کردند. از لحاظ سطح مهارت زبان خارجی شرکت کنندگان بسیار با هم متفاوت بودند، (75 نفر سطح پیشرفته، 113 نفر سطح متوسط، 126 سطح مقدماتی). کلا ...
15 صفحه اولExtensions of the Moser-Scherck-Kemperman-Wehn Theorem
Let Γ = (V,E) be a reflexive relation having a transitive group of automorphisms and let v ∈ V. Let F be a subset of V with F ∩Γ−(v) = {v}. (i) If F is finite, then |Γ(F ) \ F | ≥ |Γ(v)| − 1. (ii) If F is cofinite, then |Γ(F ) \ F | ≥ |Γ−(v)| − 1. In particular, let G be group, B be a finite subset of G and let F be a finite or a cofinite subset of G such that F ∩ B = {1}. Then |(FB) \ F | ≥ |B...
متن کاملinvestigation of quasi-periodic order in geometrical structure of patkaneh
the quasi-periodic order is a type of geometrical order in universe which is observed in the structure of quasi-crystals. this order was first introduced in mathematics in 1973 by roger penrose and then discovered in quasi-crystals in 1984 while spreading in mathematics, chemistry and physics. the paper professor james lu et al published in science magazine in 2007 illustrated that iranians wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2005
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2004.06.011